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Abstract The core features of risk for alcohol use disorders
(AUD), including behavioral disinhibition, affective dysre-
gulation, and executive dysfunction, map onto distinct neural
circuits that have been found to be abnormal in the offspring
of alcohol dependent individuals. Components of the
cerebellothalamocortical system and the extended limbic
network may provide the underpinnings for the behavioral
and emotional dysfunction observed in individuals at
heightened risk for AUD. In addition, abnormalities in these
structures appear to be altered in individuals with the
predisposition for other psychiatric conditions that may
share a similar genetic diathesis. This review proposes
several neurobehavioral mechanisms of genetic vulnerability
that may account for phenotypic characteristics in individ-
uals at risk for AUD.
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Introduction

Premorbid behavioral, cognitive, and psychobiological risk
factors have been observed in children and youth with a
family history of alcoholism that are predictive of early
initiation of drinking behavior or subsequent AUD (Crum
et al. 2008; Hill et al. 2008; Iacono et al. 2008; Johnson
and Leff 1999; Kramer et al. 2008; Kuo et al. 2008; Porjesz
and Rangaswamy 2007). Notably, individuals at heightened

risk for AUD commonly display deficits in response
inhibition, cognitive control, and emotional regulation (i.e.
aggressiveness/ irritability/mood lability), and often suffer
from comorbid conditions (e.g. anxiety disorder, ADHD,
conduct disorder, major depression, and antisocial person-
ality disorder) that share features of behavioral and affective
dysregulation. Also, offspring of alcoholics have been
reported to have diverse neuropsychological deficits, and
tend to exhibit electrophysiological abnormalities. Emerg-
ing literature suggests that these neurophysiological differ-
ences may be related to inherited variation in brain
structures that are part of the neurocircuitry responsible
for these differences. Although multiple pathways to
alcohol use and abuse during adolescence and young
adulthood have been identified, the mechanisms of height-
ened risk have not been fully elucidated. The purpose of
this review is to elaborate on the neural underpinnings of
risk for AUD.

The offspring of alcohol dependent individuals are at
increased risk for alcohol and drug dependence in young
adulthood over that seen in the general population (Bohman
1978; Cloninger et al. 1981; Goodwin et al. 1973; Kendler
et al. 2008). Twin and adoption studies reveal that the
heritability for alcohol dependence is between 40–60%
(Enoch and Goldman 1999; Heath et al. 1991, 1997;
Kendler et al. 1994, 1997; Knopik et al. 2004). The
substantial heritability of alcohol dependence also implies
a need to search for mechanisms of transmission across
generations. Among the mechanisms suggested have been
genetically-mediated tendencies toward novelty seeking or
harm avoidance (Cloninger 1987), disinhibition (Begleiter
and Porjesz 1999; Tarter et al. 2003), under controlled
behaviors including impulsivity and aggressiveness (Sher
1991; Sher and Trull 1994), and reduced response to
alcohol (Schuckit 1994; Schuckit and Smith 1997). The
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purpose of this review is to summarize the neurocircuitry
that may be responsible for variations in these behaviors in
offspring with a family history of AUD.

Due to the substantial effects that prenatal alcohol exposure
has on brain development (reviewed by Spadoni et al. 2007),
as well as the chronic effects of alcohol consumption on
brain structure and function (reviewed by Oscar-Berman and
Marinkovic 2007; Sullivan and Pfefferbaum 2005), it has
been a challenge to delineate the neurobiological risk for
AUD from the consequences of alcohol on brain
systems. Therefore, it is useful to focus on studies of
high risk individuals with minimal alcohol exposure to
identify possible etiologic mechanisms for the develop-
ment of AUD. Neurobiological factors that have been
documented prior to alcohol exposure in the offspring of
alcoholics and the offspring from families with multiplex
alcohol dependence are more likely to be causally related
to risk for AUD.

First, potential developmental pathways leading to
alcohol use disorders will be identified by synthesizing
the behavioral attributes observed in individuals at high
risk for AUD. Next, neuropsychological and neurophys-
iological characteristics of offspring of alcoholics will
be reviewed for possible identification of predisposing
risk factors. Finally, neural underpinnings of these core
deficits are proposed, and alterations in brain circuitry
in individuals at elevated risk for AUD are discussed. A
neural diathesis model will be introduced as a frame-
work for future endeavors in the research and treatment
of AUD.

Pathways to Alcohol Use Disorders

The regular use of alcohol emerges in adolescence and
young adulthood. Whether or not this use becomes
problematic appears to be related to a number of neurobi-
ological and psychosocial factors. With a view toward
integrating biological/genetic theories of etiology with
environmental hypotheses, a vulnerability conceptualization
was developed (Hill et al. 1987a). Other early conceptual-
izations of AUD have been offered that further emphasized
interactions between biogenetic aspects of personality/
termperament, environment, and behavioral domains of
influence (Sher 1991; Bates and Labouvie 1994; Jessor et
al. 1991). In a recent review, Masten et al. (2008) notes the
factors that have consistently predicted the age of regular
drinking onset including a family history of alcohol abuse,
parents’ antisocial behavior, mother’s depression, poor
parenting, prenatal exposure to alcohol, child antisocial
behavior, and child self-regulation problems. Moreover,
early onset to begin drinking is an important predictor of
adult alcohol problems.

Early Onset to Begin Drinking

The age of onset to begin regular drinking is an important
predictor of age of first alcohol problem and subsequent
alcohol dependence (Hawkins et al. 1997; Grant and
Dawson 1997), as well as greater severity and persistence
of problems with illicit drugs (Kandel et al. 1992). For
individuals that initiated drinking prior to age 14 years, the
likelihood of adult alcohol dependence was 40%, four times
more likely than individuals who began drinking at 20 years
or older (Grant and Dawson 1997). Sartor et al. (2007) also
reported that individuals that drank before age 14 years
were more than twice as likely to become alcohol
dependent than those trying alcohol after age 16 years.

A number of factors such as early adverse childhood
experiences (Rothman et al. 2008; Waltrop et al. 2007),
familial density of alcoholism (Hill and Yuan 1999; Hill et
al. 2000a), extraversion (Hill and Yuan 1999; Hill et al.
2000a), as well as markers of altered neurodevelopment
including P300 amplitude trajectories and delays in
attaining age-appropriate postural sway (Hill et al.
2000a) predict earlier age of drinking onset. Earlier onset
of drinking also appears to be related to the presence of
behaviors often characterized as “disinhibited” or belong-
ing to the externalizing domain.

Externalizing Pathway

Disinhibited behavioral problems at age 11 years, including
oppositionality, hyperactivity, impulsivity, and inattention,
predict an earlier onset of drinking (McGue et al. 2001a, b).
Greater externalizing problems indicative of behavioral
under-control have been reported to be related to earlier
age at first drink (Kuperman et al. 2005). There is also
abundant evidence that behavioral under-control is an
important determinant of later development of substance
use disorders (SUD) (reviewed by Stice et al. 1998; Zucker
2008). Behavioral under-control observed as early as 3 years
is predictive of alcohol-related problems at 21 years (Caspi
et al. 1996), and in adolescents mediates the relationship
between family history of alcoholism and young adult SUD
(King and Chassin 2004). Risk for AUD appears to be
associated with under-controlled behaviors that may derive
from certain personality traits including impulsivity, novelty
and sensation-seeking, and extraversion (Sher et al. 1991;
Sher and Trull 1994). Interestingly, extraversion in adoles-
cence completely mediates the relationship between family
history of alcoholism in multiplex families and earlier onset
to begin drinking seen in these offspring when compared to
controls (Hill et al. 2000a).

Externalizing disorders including ADHD, conduct dis-
order, oppositional defiant disorder, and antisocial personality
disorder (ASPD) are common among children, adolescents,
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and young adults with a family history of alcohol dependence
(Clark et al. 1997; Earls and Powell 1988; Earls et al. 1988;
Hill and Muka 1996; Hill et al. 1999a; Hill et al. 2008;
Kuperman et al. 1999; Merikangas et al. 1998; Ohannessian
et al. 2004; Reich et al. 1993). In high-risk youth, these
disorders generally precede the initiation of alcohol use and
are predictive of subsequent abuse and dependence (Chassin
et al. 1999; Hill et al. 2000a; Hill et al. 2008; King and
Chassin 2008; Marshal et al. 2007). Prospective longitudinal
studies in populations not selected for familial risk for AUD
further suggest that AUD is often secondary to childhood
externalizing behavioral problems (Biederman et al. 1997,
1998). For example, Mannuzza et al. (1993) found that boys
diagnosed with ADHD in childhood had significantly higher
rates of SUD in adolescence and young adulthood. Ten year
follow-up of 6–17 year old boys with ADHD has confirmed
that higher rates of adult SUD occur in association with an
earlier ADHD diagnosis (Biederman et al. 2008).

Importantly, conduct disorder is observed in approxi-
mately 30% to 50% of adolescents with ADHD (Biederman
et al. 1991). Several prospective studies have found that the
relation between ADHD and SUD is no longer significant
after controlling for conduct disorder (Barkley et al. 2004;
August et al. 2006). However, Elkins et al. (2007) showed
that ADHD was a significant prospective predictor of SUD
even after taking into account a diagnosis of conduct
disorder. Furthermore, population-based studies indicate
that conduct disorder and oppositional defiant disorder
increase the likelihood of developing a SUD (Nock et al.
2006, 2007). Ohannessian et al. (1995) found that conduct
disorder during childhood and antisocial behavior during
adulthood are among the most powerful predictors of adult
SUD compared to other psychiatric disorders.

The association between SUD and conduct disorder in
adolescence appears to be consistent with Cloninger’s
conceptualization of two types of alcohol dependence that
vary in the degree to which antisocial personality disorder
is seen. Studying a sample of Swedish men, Cloninger
found that the “type II” alcoholics could be characterized
by an early onset of problematic drinking and greater
ASPD (Cloninger et al. 1981). Type I alcoholics, on the
other hand, were characterized by a relatively late onset of
alcohol problems associated with high levels of anxiety,
introversion, and harm avoidance. Although several other
typologies have been suggested (Babor et al. 1992; Hill
1992; Moss et al. 2007), most include mention of a severity
dimension and personality characteristics including ASPD.
Although the more severe form of alcohol dependence
(Type II) has been associated with greater ASPD, a severe
form seen in multiplex families (families with multiple
alcoholic members) appears to exist in the absence of
ASPD (Hill 1992) that is characterized by an early onset of
alcohol dependence suggesting a third typology.

Internalizing Pathway

Although studies of offspring of AUD individuals typically
have emphasized externalizing psychopathology, Kellam
et al. (1980) first proposed that the presence of internalizing
disorders might predispose children to developing AUD.
Internalizing disorders have not been studied as often in
association with familial risk for AUD, though a few early
studies have suggested an elevation in internalizing
symptoms in offspring of alcohol dependent individuals
(Earls et al. 1988; Hill and Muka 1996; Reich et al. 1993).
More recent reports also find offspring at elevated risk for
internalizing disorders (Hill et al. 2008). It should be noted
that greater incidence of internalizing psychopathology may
be associated with the more severe form of alcohol
dependence seen in offspring from multiplex families (Hill
et al. 2008) than in offspring selected for the presence of
single alcohol dependent parent (Clark et al. 2004).
Epidemiological studies confirm that a family history of
AUD increases the risk for both major depression and/or
AUD, with comorbid AUD and depression most notable in
individuals with greater familial loading for alcohol
dependence (Dawson and Grant 1998).

Anxiety and stress-reactive personality traits such as harm
avoidance are frequently observed in the offspring of alco-
holics, as are low self esteem, negative affectivity, and
impairments in emotional regulation (Fine et al. 1976; Finn et
al. 1997; Moos and Billings 1982; Ohannessian and
Hesselbrock 1995; Steinhausen et al. 1984). Hill et al.
(1999b) found that 5 year old high-risk children from
multiplex alcohol dependent families exhibit a higher fre-
quency of behavioral inhibition in a peer play setting modeled
after the observational paradigm developed by Kagan et al.
(1984). Behavioral inhibition is a moderately stable temper-
amental characteristic characterized by a restrained, cautious,
or fearful reaction to unfamiliar people, places, or objects.
Behaviorally inhibited children are described as shy and
avoidant, and are at greater risk for developing an overanxious
disorder in adolescence (Rosenbaum et al. 1991; Schwartz et
al. 1999).

Children who are more likely to exhibit one or more
anxiety disorders and/or clinical depression may be at
increased risk for developing AUD (Cockerham et al. 1989;
Crum et al. 2008; Vaglum et al. 1987; reviewed by Wesner
1990). Internalizing problems in childhood, particularly
childhood separation anxiety disorder, have been found to
be associated with later development of alcoholism (Brückl
et al. 2007). Also, the time from first drink to a diagnosis of
alcoholism is decreased in individuals with a childhood
history of generalized anxiety disorder (Sartor et al. 2007),
consistent with the idea that the emotional distress
associated with depression and anxiety may drive adoles-
cent substance use (Newcomb and Bentler 1989).
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Summary: Pathways to AUD

It is important to consider the diverse developmental
pathways of risk whereby individuals ultimately develop
an AUD because each of the pathways may be associated
with alterations in varying neural circuits. A diagnosis of a
disruptive behavior disorder (e.g. ADHD, conduct disorder,
oppositional defiant disorder) increases the likelihood of an
AUD in young adulthood among offspring with an
alcoholic parent. Offspring of alcoholics also are at greater
risk for developing internalizing disorders (anxiety disor-
ders, major depressive disorder and related mood disorders)
that influence the likelihood of future substance use
problems. Because the neural circuitry associated with
ADHD, conduct disorder, ASPD, anxiety, and depression
most likely differs in structural or functional characteristics,
it is important to assess comorbid conditions in offspring
who are at risk for AUD because of their familial/genetic
background. Uniformity of results should probably not be
expected for high risk offspring unless personal histories of
psychiatric disorders are controlled. However, the prefrontal
cortex and regions of the limbic system are good candidate
regions because they have been observed to be abnormal in
individuals with externalizing and internalizing disorders and
in offspring of alcoholics.

Also, it is noteworthy that the set of variables associated
with the initiation of drinking behavior may not be the same
as those related to problematic use. Externalizing problems,
antisocial behavior, and peer influences appear to be more
strongly associated with the exposure and initial use of
alcohol, while family history of alcoholism and parental
psychopathology may play a more salient role in transition
to dependence (Fite et al. 2006; Pagan et al. 2006; Rhee et
al. 2003; Rose et al. 2001, 2004).

Risk Factors for AUD from Neuropsychological,
Neurophysiological, and Neuroimaging Studies

In addition to behavioral and emotional difficulties,
offspring of alcoholics have been reported to have poor
linguistic ability, deficits in problem solving and abstract
reasoning, poor visuospatial and perceptual-motor ability,
and decreased attention span (Drejer et al. 1985; Ozkaragoz
et al. 1997; reviewed by Pihl et al. 1990). Background
factors such as socioeconomic status may influence the
extent to which these deficits are observed, so that
extensive neuropsychological deficits are not seen in
offspring of alcoholic parents with higher socioeconomic
status (Hill et al. 1999a). High risk offspring tend to display
impulsivity and disinhibition during cognitive paradigms
designed to require thoughtful planning and inhibitory
control. Also, reduced amplitude of the visual P300

component of the event-related potential appears to be
commonly observed. Heightened neuroendocrine responses
to threatening stimuli also appear to characterize those with
familial loading for alcohol dependence. Finally, differen-
tial reactions to alcohol administration in the form of a low
level response to the effects of alcohol are prominent
among the offspring of alcoholics (Schuckit 1994; Schuckit
et al. 1996).

Although abundant neuroimaging studies have docu-
mented the effects of alcohol on the brain in both chronic
and abstinent alcoholics (reviewed by Oscar-Berman and
Marinkovic 2007; Sullivan and Pfefferbaum 2005; Mann et
al. 2001), there have been limited studies using MRI to
investigate neural mechanisms of possible risk in high risk
offspring who have not developed an AUD. Moreover,
fMRI studies of offspring with a family history of AUD
have used a variety of cognitive paradigms with small
heterogeneous samples, thereby making it difficult to
generalize findings across studies. Aside from these
limitations, the studies provide some evidence of functional
deficits that generally precede alcohol use and may underlie
behavioral and cognitive deficits among offspring with a
family history of AUD.

Attention and Executive Dysfunction

It has been frequently observed that offspring from families
with a history of AUD exhibit deficient performance on
attention and working memory tasks. Children with high
familial density of AUD show poorer performance com-
pared with children with a negative family history on the
Digit Span subtest of the WISC-R, a test requiring focused
attention (Corral et al. 1999). Tapert and Brown (2000)
found that family history of alcohol dependence was an
independent predictor of deficient performance on attention
tasks during adolescence after accounting for previous
alcohol use. During vigilance tasks, high risk youth show
decreased blood-oxygenation level dependent (BOLD)
response in bilateral regions of the middle frontal and
cingulate gyri (Spadoni et al. 2008). On working memory
tasks, sons of male alcohol dependent individuals have
been shown to perform more poorly compared to control
subjects (Harden and Pihl 1995; Peterson et al. 1992).
However, in sons of multi-generational AUD families,
working memory deficits were more likely due to attention
problems or other co-existing mental health issues (Wiers et
al. 1998).

There is further evidence of deficits on classical
neuropsychological tests of executive function [e.g.
Wisconsin Card Sorting Test (WCST), Stroop Task] in
the offspring of alcoholics. Sons of alcoholic fathers
make greater perseverative errors on the WCST compared
to offspring of control subjects (Peterson et al. 1992),
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reflecting an inability to inhibit response patterns based on
experimenter feedback. Perseverative errors appear to be a
relatively common difficulty in impulsive/compulsive dis-
orders including addiction (Goldstein and Volkow 2002).
Only children with multi-generational alcoholism and not
all children with a family history of alcoholism show
impaired performance on the WCST over time (Corral et al.
2003). Performance on the Stroop task is impaired in
individuals with a family history of AUD compared to
persons with no family history (Diaz et al. 2008), and this
difference appears to be more common in those with
antisocial tendencies (Lovallo et al. 2006). Consistently,
children of antisocial alcoholics display relatively poorer
attention, working memory, and abstract planning abilities
compared to children from control families (Poon et al.
2000). Performance deficits on the Stroop task may be
related to decreased activation in frontolimbic circuitry that
has been observed in adolescents with a positive family
history (Silveri et al. 2009). Possibly, WCST performance
involves decreased activation of frontolimbic circuitry
among offspring of alcoholics, though studies addressing
this issue have not been done.

Giancola and Moss (1998) report that mild executive
dysfunction in alcoholics and those at-risk for alcohol
dependence by family history appears greater in individuals
with comorbid ASPD, ADHD, or conduct disorder.
Compromised executive function may be an underlying
etiologic substrate of disorders of behavioral dysregulation
and not limited to risk for alcohol dependence. This is
consistent with the documented executive function deficits
in individuals with ADHD, conduct disorder, and ASPD
(Barkley et al. 1992; Doyle 2006; Herba et al. 2006; Pajer
et al. 2008; Stevens et al. 2003).

Executive Deficits in Motor Control

Barkley (2004) has argued that motor control is part of
executive function. Therefore, intact executive function
would appear to be crucial for competent motor control
(e.g. Seitz et al. 2000). There is some indication of deficits
in gross and fine motor coordination in the offspring from
families of alcoholics. Lipscomb et al. (1979) were the first
to identify greater body sway in offspring from families
with an alcoholic parent. These initial observations that
individuals with a family history of alcoholism are more
likely to exhibit impairments in postural stability were
supported by subsequent studies (Hegedus et al. 1984; Hill
et al. 1987b; Hill and Steinhauer 1993). Because postural
control improves with age, decrements in the rate of
improvement with age seen in high risk offspring may
reflect a subtle developmental delay (Hill et al. 2000b). A
recent report finds that greater sway at age 15 coupled with
lower amplitude of P300 before age 13 increases the risk

for developing SUD in young adulthood 8-fold (Hill et al.
2009b). Using data from the Danish Longitudinal Study of
Alcoholism, Manzardo et al. (2005) found that insufficient
motor tone several days following birth and delays in age to
sitting and walking significantly predicted those individuals
that received a diagnosis of lifetime AUD. These inves-
tigators suggest that cerebellar abnormalties may be
associated with these observed differences in motor tone
that appear to predict the occurrence of AUD.

Saccadic and smooth pursuit eye movements have
been postulated to play a role in organizing and
integrating visual forms in the environment. The delay
in voluntary occulomotor navigation reflects deficits in
the neural systems that underlie the executive control of
eye movements. Habeyck et al. (2006) found that
children of fathers with an AUD exhibited a higher rate
of saccadic errors on the most difficult tasks associated
with antisaccadic eye movement. A follow-up neuro-
imaging study of youth at high risk for developing SUD
found that the inhibition of eye movement response was
related to activation in the frontal cortex (McNamee et al.
2008). Likewise, a number of studies investigating eye
movements in subjects with ADHD have identified
deficits in inhibiting responses (i.e. premature saccades;
Ross et al. 1994), directional movement (i.e. antisaccades;
Mostofsky et al. 2001), and stopping an already initiated
response (i.e. countermanding saccade task; Hanisch et al.
2006). Dysfunction in oculomotor control has been identified
in boys with ADHD and their unaffected brothers, suggest-
ing that saccade deficits may be a potential endophenotype
for ADHD (Rommelse et al. 2008).

Disinhibition

Neuropsychological inhibition has been operationalized by
a number of cognitive paradigms that measure the ability to
inhibit a behavior, stop a response once it has been
initiated, or delay the choice of a rewarding item.
Commonly, stop tasks or go/no-go tasks have been used
to quantify neuropsychological inhibition. During a stop
task in which a subject is instructed to respond as quickly
as possible only on trials with a no-stop tone, children with
a family history of AUD were slower in responding and
also had difficulty suppressing responses to stop tones
(Nigg et al. 2004). Using a go/no-go task, Saunders et al.
(2008) found that high risk offspring with a greater
tendency toward impulsivity and norm violation were more
likely to make commission errors. BOLD activation in the
middle frontal gyrus during response inhibition on a go/no-
go task has been shown to be decreased among high risk
offspring (Schweinsburg et al. 2004).

A multi-dimensional construct of neurobehavioral disin-
hibition consisting of indicators of difficult temperament,
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executive dysfunction, and externalizing behaviors has
been reported to discriminate between high risk and low
risk offspring of AUD individuals during childhood and
adolescence (Tarter et al. 2003). However, it should be
noted that the parents of the studied offspring had a high
degree of comorbid antisocial behaviors due to the selection
process used to include the parent-offspring pairs. Also,
difficult temperament judged by parents may be unreliable
due to parental expectations that bias parent report of
offspring (Mangelsdorf et al. 2000). Also, it seems
plausible that parents with greater likelihood of psychopa-
thology will be less tolerant of their children’s perceived
behavioral infractions. Not surprisingly, parental SUD
predicts neurobehavioral disinhibition in their offspring,
and neurobehavioral disinhibition during adolescence in the
offspring of alcoholics is predictive of SUD in young
adulthood (Tarter et al. 2004). King et al. (2009) con-
structed an index of behavioral disinhibition comprised of
measures of delinquency and peer deviance, antisocial
attitudes, impulsive traits, and substance use in the
adolescent offspring of adoptive and non-adoptive parents.
A history of parental AUD was associated with higher
levels of adolescent disinhibition, particularly when reared
by their biological alcoholic parents.

Alternatively, physiological measures of neural disinhi-
bition have been studied extensively in the offspring of
alcoholics. There is a long-established literature on differ-
ences in resting EEG in individuals at risk for AUD
(reviewed by Porjesz et al. 2005). It has been suggested that
low amplitude of event-related potentials (ERPs) and other
event-related oscillations (EROs) in high risk children may
reflect an overall reduction in central nervous system
inhibition. P300 amplitude is one salient predictor of age
of onset to begin drinking (Hill et al. 2000a). A consensus
seems to have emerged that the amplitude of the P300
component of the ERP reflects a predisposition to have a
disinhibited temperament that is related to risk for SUD
(Iacono and McGue 2006; Porjesz and Rangaswamy 2007).
However, the lower P300 amplitude associated with earlier
onset to begin drinking may be associated with generalized
disinhibition that is associated with early onset of a number
of deviant behaviors (McGue et al. 2001a, b).

Begleiter et al. (1984) were the first to show P300
amplitude differences between high and low risk 10 year
old boys who performed a visual ERP task. Numerous
cross-sectional studies of ERP abnormalities in the off-
spring of alcohol dependent individuals and in offspring
from multiplex families confirmed that reduced P300
amplitude was a plausible endophenotype for risk for
AUD (Costa et al. 2000; Hesselbrock et al. 1993; Hill and
Steinhauer 1993; Porjesz et al. 1998; Rangaswamy et al.
2007). Availability of data for children and adolescents
studied yearly with ERP provided the first evidence that

observed risk group differences might be due to altered
developmental trajectories of P300 amplitude in offspring
from families with high densities of alcohol dependence.
Mixture analysis of trajectories suggests that those individ-
uals with a pattern characterized by low P300 amplitude
across childhood and adolescence have greater risk for
externalizing disorders (Hill and Shen 2002). These find-
ings support risk group differences in mechanisms of neural
inhibition (Hill et al. 1995, 1999c).

Additionally, youth with a family history of AUD
display reduced EROs on go/no-go tasks predominantly at
parietal-occipital and centro-parietal regions (Cohen et al.
1997; Kamarajan et al. 2005, 2006). Children of alcoholics
tend to have reduced gamma band activity in parietal
regions while processing the target stimulus during a visual
oddball task (Padmanabhapillai et al. 2006). Similarly, high
risk children from multiplex families have reduced delta
and theta band EROs to the target stimulus during the same
task (Rangaswamy et al. 2007). A significant reduction of
delta and theta EROs has been postulated to underlie the
decreased P3 amplitude often observed in the offspring of
alcohol dependent individuals (Porjesz et al. 2005).

Dysfunction in Decision Making and Affective
Responsivity

Young adults with a family history of AUD have been
characterized as having an excessive sensitivity to
reward, in that they tend to pay greater attention to
monetary gains when making decisions on the Iowa
Gambling Test compared with individuals with no family
history of alcoholism (Lovallo et al. 2006). A follow-up
fMRI study of high risk individuals performing the Iowa
Gambling Task has revealed greater activation in the left
anterior cingluate gyrus and left caudate in the absence of
performance differences on this task (Acheson et al. 2009).
Investigating the recruitment of motivational circuitry by
monetary rewards using fMRI in adolescents at high and
low risk for AUD, Bjork et al. (2008) found BOLD signal
did not differ in the ventral striatum, nucleus accumbens,
and mesofrontal cortical regions between risk groups.
Decisions that led to the loss of rewards, though, evoked
more extensive right anterior insula activation in controls
compared to adolescents with a family history of SUD.

Evidence for diminished affective responsivity was
found in an fMRI study in which offspring from multiplex
for alcohol dependence families exhibited diminished
BOLD response in the right medial temporal gyrus in
comparison to controls when asked to judge facial affect
during a theory of mind (ToM) task (Hill et al. 2007b).
Young adults with a family history of AUD, and who had
been characterized as more disinhibited than young adults
without a family history, were more likely to display
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reduced amygdala activation to fearful faces (Glahn et al.
2007). During a similar passive viewing task of emotional
stimuli, Heitzeg et al. (2008) found less bilateral activation
of the orbitofrontal gyrus and left insula in a group of
offspring of alcoholics with a pattern of problematic
drinking during adolescence. Compared to both a non-
drinking control group and a high risk group that had
refrained from alcohol use during adolescence, the problem
drinking group had greater activation in medial prefrontal
cortex and decreased activation in the striatum and
amygdala. However, no differences were observed between
the control and non-drinking high risk groups. Overall,
these studies generally suggest differential sensitivity to
rewards and affective cues in individuals at risk for AUD.

Autonomic Hyperarousal

Offspring of alcoholics tend to have higher baseline heart
rates (Harden and Pihl 1995; Hill et al. 1992), and show
increased cardiovascular reactivity to aversive stimuli (Finn
and Pihl 1988; Finn et al. 1990; Harden and Pihl 1995;
Peterson et al. 1993; Stewart et al. 1992). Also, offspring
from families with AD individuals may be hypersensitive to
the effects of alcohol on cardiovascular activity (Finn and
Pihl 1988; Peterson et al. 1993; Shuckit 1994; Schuckit
et al. 1996). Alcohol may serve to dampen heart rate and
electrodermal reactivity to stress more in young adults with
a family history of alcoholism than in offspring without a
family history (Finn et al. 1990; Peterson et al. 1993, 1996;
Stewart et al. 1992). Slowing of heart rate may be
associated with increased perception of relaxation making
alcohol more rewarding to high risk offspring.

Several studies suggest that high risk individuals display
a blunted neuroendocrine response to stress (Dai et al.
2002; Dawes et al. 1999; Sorocco et al. 2006), similar to
those observed in children with ADHD (Hastings et al.
2009; King et al. 1998; Shin and Lee 2007), conduct
disorder (Fairchild et al. 2008; McBurnett et al. 2005) and
ASPD (O’Leary et al. 2007). It has been reported that 10- to
12-year-old offspring of alcoholics show reduced reactivity
of the hypothalamic-pituitary-adrenocortical (HPA) system
to a potentially anxiety-provoking situation and an attenu-
ated return to baseline cortisol levels (Moss et al. 1995,
1999). In contrast, other studies have shown that cortisol
response to psychosocial stress is significantly increased in
offspring with a family history of AUD compared to those
with no family history of AUD (Uhart et al. 2006;
Zimmermann et al. 2004). These contradictory findings
may be due to varying psychological comorbidity, previous
drug and alcohol use, gender distribution, and personality
traits all of which that have been shown to influence HPA
functioning. Interestingly, conduct disorder symptoms in
children may contribute to the diminished cortisol secretion

in response to an anticipated stressor suggesting that
neuroendocrine response in offspring of AUD individuals
is complex and often appears in a multitude of forms (Moss
et al. 1995).

In offspring of alcohol dependent individuals, ethanol
consumption results in significantly lower adrenocortico-
tropic hormone (ACTH) and cortisol levels compared to
control subjects that are predictive of future AUD
(Schuckit 1998; Schuckit et al. 1996; Schuckit and Smith
1997). An alcohol-induced attenuation of the ACTH
response to stress has also been noted in high risk subjects
(Zimmermann et al. 2004), while ethanol consumption
prior to a stress task attenuated the stress-induced increase
is ACTH and cortisol levels in both high and low risk
groups (Dai et al. 2002, 2007).

Vulnerable Brain Systems in Individuals at Risk
for AUD

A consideration of the brain regions involved in affective
regulation, executive function, and autonomic reactivity
suggests a primary role for the limbic, cerebellothalamo-
cortical, and HPA systems. These regions may play an
important role as neural underpinnings of risk for AUD.
The cerebellum, thalamus, hypothalamus, and regions of
the prefrontal cortex are particularly susceptible to alcohol
(Harper et al. 2003; reviewed by Harper and Matsumoto
2005), and the interconnected circuits among these systems
define the neural substrates of intrinsic motivation, rein-
forcement, and reward in addiction (Koob 1996, 2003). The
forthcoming discussion describes components of these
overlapping systems that have been found to be vulnerable
in individuals at risk for AUD.

Cerebellothalamocortical System

The cerebellum has been most notably associated with the
coordination of motor functions, particularly the movement
of voluntary muscles and the maintenance of balance and
postural stability. Although the cerebellum plays a promi-
nent role in motor functions, the cerebellum is also
involved in planning and reasoning abilities, assisting the
prefrontal cortex in these functions (Strick et al. 2009). The
cerebellum is extensively interconnected to the neocortex
through both feedforward and feedback mechanisms
(Fig. 1). In addition, physiological observations support
the existence of pathways to and from the amygdala,
hippocampus, and posterior hypothalamus (Anand et al.
1959; Harper and Heath 1973; Schmahmann and Pandya
1997). These pathways have been shown to subserve a
number of executive functions involved in affective
regulation (Baillieux et al. 2008).
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Hill et al. (2007a) found a significant increase in grey
matter and a tendency for total volume of the cerebellum to
be increased in adolescents and young adults at high risk
for AUD. Age regression of the grey matter volumes
suggested a slower reduction in grey matter volumes among
the offspring of alcoholics that may indicate a delay in grey
matter pruning or slower maturational increases in white
matter. Benegal et al. (2007) also found differences in
cerebellar volume in high risk alcohol-naive subjects using
both region of interest and voxel-based morphometric
analyses. Compared to controls, high risk subjects also
had decreased grey matter volume in the thalamus, superior
frontal gyrus, and cingulate gyrus.

Cerebellar abnormalities are associated with deficits in
posture, volitional movements, balance, and gait (reviewed
by Steinlin 2008). Cerebellar vermian volume in chronic
alcoholics correlates with postural sway, with longer
duration of sobriety related to improved balance (Sullivan
et al. 2006). Hyperkinetic movements that are a hallmark of
the primarily hyperactive subtype of ADHD are likely to be
associated with a nonlinear volume loss in the cerebellar
vermis (Mackie et al. 2007). Given the high prevalence of
alcohol abuse in patients with ADHD, these disorders may
share a genetic liability in the form of morphometric
abnormalities of the cerebellum that underlie the docu-
mented premorbid deficits in posture and gait. As noted
previously, motor deficits have been identified in the
offspring of alcohol dependent individuals prior to pro-
longed alcohol exposure.

Cerebellar output to ocular muscles via motor neurons in
the brainstem control saccadic and smooth pursuit eye
movements (reviewed by Thier and Ilg 2005; Krauzlis
2004). Eye movement irregularities in individuals at

heightened risk for AUD suggest that these pathways may
also be susceptible. This is consistent with oculomotor
deficits in ADHD, further suggesting that cerebellar
dysfunction may be a common neurobiological substrate
for AUD and ADHD. Taken together, static ataxia and
deficient control of eye movements may be present prior to
prolonged alcohol consumption in subjects with a family
history of AUD or those with behavioral predispositions to
AUD. Longitudinal data from high risk offspring with
slower derailment of postural control suggest this may be so
(Hill et al. 2000b). Recent evidence suggests that there is an
eight-fold increase in risk for SUD in those above the
median for sway and below the median for P300 amplitude
(Hill et al. 2009b).

Because deficits in executive function and behavioral
control are frequently observed in the offspring of
alcoholics, the prefrontal cortex, as one component of
the cerebellothalamocortical system, is likely to be
integrally involved in alcoholism risk. Recent reviews
have highlighted the role of the prefrontal cortex in
behavioral control (Tanji and Hoshi 2008), working
memory (Badre and Wagner 2007), behavioral planning
(Tanji and Hoshi 2001), and decision making (Fellows
2007). Neuropsychological studies of high risk offspring of
alcohol dependent individuals underscore deficits in these
domains. Also, neuroimaging studies of high risk subjects,
though much fewer in number, implicate involvement of
the prefrontal cortex, particularly the inferior and middle
frontal gyri. This supports a lack of prefrontal regulation on
mechanisms of attention, behavioral control, and inhibition.
Not surprisingly, structural abnormalities in the cerebello-
thalamocortical system are present before the initiation of
alcohol use in the offspring of alcoholics (Benegal et al.
2007; Hill et al. 2007a).

The Limbic System

The limbic system remains the pre-eminent mechanism of
emotion. Heimer and colleagues (Alheid and Heimer 1988;
de Olmos and Heimer 1999; Heimer et al. 1991) proposed
an anatomical framework that delineates limbic regions into
functional—anatomical systems consisting of the basal
forebrain, “extended amygdala”, and limbic lobe. In doing
so, this revised conceptualization of the limbic system more
appropriately address the complexity of the basal forebrain
and extended amygdala as primary output channels for
activities originating from the neocortex (Heimer 2003;
Heimer and Van Hoesen 2006). An abbreviated schematic
of this extended limbic network is provided in Fig. 2.

The broadly defined extended amygdala, which includes
the bed nucleus of the stria terminalis and the central medial
amygdala have been implicated in behavioral motivation
and reward (Alheid and Heimer 1988). These nuclei are

Fig. 1 According to Schmahmann and Pandya (1997), the cerebro-
cerebellar circuit is composed of a feedforward limb that includes the
corticopontine and pontocerebellar mossy fiber projections, and a
feedback loop that contains the cerebellothalamic and thalamocortical
pathways. The corticopontine pathway originates in the Vb layer of
cerebral cortex and carries associative, sensory, and motor information
from cortical neurons to neurons in the ventral pons. This information
is directed to the cerebellum, and then projected to the thalamus
through midbrain neurons of the red nucleus. Afferent pathways
originating in the thalamus and projecting to the cortex complete the
feedback loop
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fundamental in avoidance learning, and projections from
the extended amygdala to the lateral and medial divisions of
the hypothalamus also support their role in the regulation of
autonomic and somatosensory activities. These functions
have been studied extensively with regard to their role in
appetitive mechanisms and addiction. Thus, the extended
amygdala is in a unique position to coordinate inputs from
multiple limbic lobe regions in order to provide behavioral
responses though its output channels (Heimer 2003).
Dysfunction of the extended amygdala has been proposed
to underlie changes in behavioral motivation for rewarding
objects that manifest as (a) impulsive acts driven by
pleasure and gratification and the positive reinforcing
effects of drugs of abuse and (b) compulsive behavior that
is produced through negative reinforcement to reduce the
negative emotional state arising from substance dependence
(Koob 2003).

The limbic lobe, on the other hand, is restricted to
portions of the cortical mantle on the medial side of each
hemisphere (Heimer and Van Hoesen 2006). The limbic
lobe encompasses the hippocampus and parahippocampal
gyri, lateral basal cortical amygdala, cingulate and insular
cortices, as well as their pathways to the orbitofrontal
cortex (OFC). The cingulate cortex has been implicated in
attention, emotional processing, decision-making, and
motor initiation (reviewed by Paus 2001), while the insular

cortex is involved in processing of multimodal sensory
information (reviewed by Nagai et al. 2007). The OFC,
particularly in the right hemisphere, appears to be a neural
substrate for mechanisms of inhibition and has been
implicated in substance use disorders (reviewed by Dom
et al. 2005). OFC projections to the basolateral amygdala
provide local inhibitory influences through GABAergic
neurotransmission. Failure to regulate the amygdala due to
aberrant OFC volume or projections may cause impairment
in learning to inhibit a prepotent response to obtain reward,
or difficulty adjusting to new reward contingencies (e.g.
Man et al. 2009).

Multiple components of the extended limbic network
have been found to be structurally and/or functionally
deficient in the offspring of alcohol dependent individuals.
Particularly, offspring from multiplex families of alcoholic
individuals with minimal prior exposure to alcohol have
decreased volume of the orbitofrontal cortex in the right
hemisphere (Hill et al. 2009). They also show reduced right
amygdala volume compared to control subjects before
drinking begins (Hill et al. 2001). Reduced grey matter
has been reported for the amygdala and hippocampus in
offspring from an Indian population of multigenerational
families of alcoholics (Benegal et al. 2007). Since these
regions are involved in emotion regulation and inhibition,
the documented abnormalities in the offspring of alcoholics
may correspond to the behavioral and affective dysfunction
often observed in these individuals. Additionally, many of
these regions have been found to be abnormal in psychiatric
disorders that may share a diathesis for AUD.

An inverse relationship between grey matter volumes of
the OFC and measures of impulsivity has been shown in
healthy adults (Matsuo et al. 2008). Children and adults
with ADHD who exhibit disinhibited and impulsive
behaviors have smaller OFC volumes compared with
healthy subjects (Carmona et al. 2005; Hesslinger et al.
2002). Aspects of the extended limbic network have been
found to be abnormal in individuals with major depression
(reviewed by Drevets et al. 2008). Similarly, a meta-
analysis of functional imaging studies supports a connec-
tion between increased activation of the amygdala and
insula and anxiety disorders (Etkin and Wager 2007).

There appears to be a distinct pattern of anatomical
asymmetry, particularly in the OFC, that is functionally
important in behavioral and emotional regulation. Unilateral
right hemisphere damage to the ventrolateral prefrontal
cortex (PFC) is associated with severe deficits in social/
emotional and descision-making processes (Tranel et al.
2005). Greater involvement of the right than left prefrontal
cortex is seen in tasks involving response selection and
inhibition, with suboptimal response inhibition in children
and adolescents is related to insufficient recruitment of the
right ventrolateral PFC (Rubia et al. 2001). This is consistent

Fig. 2 The extended limbic network consists of the basal forebrain,
extended amygdala, and limbic lobe as described by Heimer and Van
Hoesen (2006). To aid in visualization, not all structures or established
projections are displayed. Regions of the basal forebrain, which
includes areas usually referred to as the ventral striatum and nucleus
accumbens, receive input from the extended amygdala, limbic lobe,
and dopaminergic neurons of the ventral tegmental area. The extended
amygdala includes the central and medial nuclei of the amygdala, their
extensions to the bed nucleus of the stria terminalis, as well as
downstream projections to the ventral striatum and nucleus accum-
bens. The extended amygdala has abundant associative connections
with the hypothalamus as well as greater limbic lobe, including the
hippocampus, cingulate and insular cortex, lateral basal cortical
amygdala, and OFC
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with a subsequent study that found that boys with conduct
disorder had lower activation of the right orbitofrontal cortex
compared with healthy controls subjects and those with
ADHD (Rubia et al. 2008). Moreover, volumetric differences
in adolescents at high risk for AUD appear to be limited to
the right OFC (Hill et al. 2009).

Although the functional and psychopathologic conse-
quences of hemispheric differences remain uncertain, these
findings emphasize the importance of the lateralization of
the limbic lobe in the pathophysiology of risk for AUD as
well as in disorders that are frequently observed in the
offspring of alcoholics. It is possible that differences in the
hemispheric lateralization of the OFC in a number of
psychiatric disorders reflect a failure to regulate the
amygdala and hence a vulnerability to over and under-
controlled behaviors.

The HPA System

As noted earlier, individuals at risk for AUD tend to exhibit
anomalies in their response to aversive stimuli as indicated
by elevations in heart rate and blunted cortisol levels. In the
presence of alcohol, the HPA system seems to be
differentially affected by stress in high risk youth compared
to control subjects. The HPA system regulates multiple
components of the body’s autonomic response to stress and
prepares mechanisms in the brain for responsive action and
survival (de Kloet et al. 1999). The HPA system is an
important regulatory system that acts through hormone
cascades to support both behavioral and physiological
responses to threat (de Kloet et al. 1998). Alteration in
HPA functioning associated with alcoholism risk may
negatively impact an individual’s ability to respond to
internal and external challenges (i.e. cope with stress). In
addition, cognitive deficits are associated with HPA system
dysfunction (e.g. Cushings disease), so it is equally
plausible that altered neurohormone levels in the offspring
of alcoholics can disrupt cognitive processes (Starkman
et al. 2001).

Figure 3 displays a schematic of the HPA system. The
system involves regions within the brain including the
hypothalamus that produces corticotropin-releasing hormone
(CRH), and the pituitary that releases adrenocorticotropin
hormone (ACTH). Cortisol and other glucocorticoid hor-
mones are produced and secreted outside the brain by the
adrenal glands. The release of CRH from the hypothalamus
stimulates ACTH release from the pituitary that triggers the
secretion of glucocorticoids, including cortisol, from the
adrenal glands. In turn, a negative feedback effect on the
system occurs at the level of the pituitary as well as other
brain sites including the hypothalamus, hippocampus, and
regions in the frontal cortex (Diorio et al. 1993). Therefore,
abnormalities in the brain structures associated with negative

feedback on the HPA system may produce maladaptive
patterns of hormone secretion that influences behavioral and
emotional regulation.

The hippocampus plays a role in modulating activity of the
HPA axis via a negative feedback system that involves
glucocorticoid binding to receptors in the hippocampus
(Herman et al. 2005; Jacobson and Sapolsky, 1991). In
rodents, smaller hippocampal volume is associated with
heightened glucocorticoid levels and blunted negative
feedback (Hibberd et al. 2000; Meaney et al. 1995, 1996).
Consistent with the role of the hippocampus in modulating
HPA activity, hippocampal volume is typically found to be
inversely correlated with glucocorticoid levels in humans
(Tessner et al. 2007; Wiedenmayer et al. 2006). In addition,
the medial frontal cortex and anterior cingulate is involved in
glucocorticoid regulation (Brake et al. 2000; Diorio et al.
1993; Sullivan and Gratton, 2002), and it appears that
smaller cingulate cortex volumes may be associated with
HPA axis dysregulation (MacLullich et al. 2006).

There is an extensive body of literature to support a
relationship between neuroendocrine abnormalities of the
HPA system and various forms of psychopathology
(Pariante and Lightman 2008; Stansbury and Gunnar
1994; Susman 2006; Walker et al. 2008). More specifically,
differences in basal cortisol levels as well as the adrenal
response to stress have been noted in studies of childhood
behavioral problems (Klimes-Dougan et al. 2001; Shirtcliff
et al. 2005). Heightened cortisol secretion has been linked
to internalizing symptoms, including anxiety and withdrawal
(Brown et al. 1996; Colomina et al. 1997; Schmidt et al.
1997; Windle 1994). Baseline and post-dexamethasone
elevation in cortisol levels is associated with depression in
adults (Nelson et al. 1997; Rush et al. 1996), adolescents
(Foreman and Goodyer 1988), and prepubertal children
(Puig-Antioch et al. 1989). Conversely, attenuated activity

Fig. 3 A schematic representation of the hypothalamic-pituitary-
adrenocortical (HPA) system. Cortisol acts on the brain through
binding to glucocorticoid receptors (GRs). Binding to these receptors
in some regions of the brain, including the hippocampus, cingulate,
and frontal cortex triggers a negative feedback system that dampens
release of corticotropin-releasing hormone (CRH) and adrenocortico-
tropic hormone (ACTH), thus modulating HPA activity
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of the HPA system has been identified as a risk factor for
antisocial behavior (Susman 2006).

Possible Neural Diatheses for Alcohol Use Disorders

The emergence of alcohol use disorders, as with other
psychiatric disorders that follow a developmental course, are
preceded by a number of neurobiological and psychosocial
risk factors that are often predictive of outcome. Identified in
this review are two likely pathways to the emergence of
alcohol use and subsequent abuse and dependence: (1) A
constellation of externalizing behaviors representative of
deficits in executive control and behavioral inhibition and (2)
a trajectory of internalizing problems undermined by
mechanisms of affective dysregulation. Importantly, these
behavioral and emotional characteristics are present before
the onset of alcohol use and appear to be subserved by
genetically-mediated neural circuits in the offspring of
alcoholics.

The preponderance of the data suggests that the external-
izing pathway to alcohol dependence may be partially
determined by variation in the functioning of circuitry
involved in executive control and behavioral inhibition that
includes connectivity of the cerebellum, thalamus, and
prefrontal cortex which generates a cortico-thalamo-
cerebellar feedback loop. This circuitry has also been
implicated in frequently co-occurring conditions including
ADHD (Nigg and Casey 2005). The internalizing pathway is
associated with mood problems, negative affect, and a
hypersensitivity to rewards/stress reflective of alterations in
the OFC, extended amygdala, hypothalamus, and the HPA
system. Impairments in emotional conditioning due to
abnormalities of the extended limbic network (including
hippocampal and hypothalamic feedback of the HPA system)
have been postulated in developmental models of ASPD
(Blair 2001; Blair et al. 2006; Crowe and Blair 2008;
Susman 2006) and affective disorders (Monk 2008). The
neural circuits of the internalizing and externalizing path-
ways are highlighted in Fig. 4. Notably, the pathways are
interconnected and further communicate through the cingu-
late gyrus and insular cortex.

The model proposed here encompasses potential neural
systems underlying the risk for AUD and serves as a
framework for understanding the complex traits associated
with alcoholism risk. The nature of the inborn variations
in brain structure and function associated with risk for
AUD and other comorbid conditions requires further
study. At present, it appears that premorbid dysfunction
of the cerebellothalocortical system may predispose an
individual to an externalizing pathway to AUD that is
prompted by difficulties with behavioral control and
inhibition. Following the reinforcing pleasurable effects

of alcohol exposure, behavioral under control may lead to
an inability to restrain future consumption. Alternatively,
abnormalities in the extended limbic network, including
the orbitofrontal cortex, amygdala, and hypothalamus may
drive the negative affective characteristics shown to elicit
alcohol abuse, thereby making the anxiolytic properties of
ethanol more gratifying. Complementary, failure to regu-
late the HPA axis may influence an individual’s behav-
ioral response to novelty and anxiety-related behaviors in
the presence of stress, motivating the use of alcohol to
achieve sedation.

The current model provides some indication of the
neuroanatomical circuits that may underlie the core features
of risk for AUD. Others have proposed similar brain
regions associated with AUD, including the cerebellothala-
mocortical system (Sullivan 2003; Sullivan et al. 2003),
extended amygdala (Koob and Le Moal 2008), and
mesocorticolimbic dopamine system (Comings and Blum
2000; Blum et al. 2000; Bowirrat and Oscar-Berman, 2005;
Makris et al. 2008). However, these conceptualizations
have been largely based on the effects of chronic alcohol
exposure on brain systems. The present review has focused

Fig. 4 A schematic of the pathways that are of primary relevance to the
core features of risk for alcohol dependence, particularly behavioral and
affective dysfunction. The pathways are color coded to assist in
visualization. The externalizing pathway to alcohol dependence (yellow)
is associated with deficits in executive function and in inhibition and may
share a common genetic diathesis with ADHD and conduct disorder. The
brain regions of the externalizing pathway consist of the cerebellum
(Crb), thalamus (Tha), and prefrontal cortex (PFC) which comprise the
cerebellothalamocortical feedback system. The internalizing pathway to
alcohol dependence (green) is associated with affective dysregulation (i.e.
depression and anxiety-related traits), deficient mechanisms of motiva-
tion and reward (i.e. impulsivity and dysfunction in decision-making),
and autonomic hyperarousal (i.e. harm avoidance and stress reactivity)
through overlapping pathways of the HPA system (shown in red). The
internalizing pathway includes the amygdala (Amy), orbitofrontal cortex
(OFC), and hypothalamus (Hyp) and pituitary (Pit) of the HPA axis, as
well as the brain regions of the mesolimbic dopamine pathway (NAc =
nucleus accumbens; VTA = ventral tegmental area). The cingulate gyrus
(CG) connects these pathways
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on identifying the neural circuitry that may provides clues
concerning how familial genetic loading for alcohol
dependence is translated into higher risk for succeeding
generations to become alcohol dependent as well. In doing
so, we have described findings obtained in those with
familial loading for AUD who have had minimal alcohol
exposure at the time of examination. Consequently, the
findings described do imply that abnormalities of the
cerebellothalamocortical, extended limbic network, and
HPA system may precede the initiation of alcohol use and
are therefore particularly important in the etiology of AUD.

Directions for Future Research

Genetic variation may result in differences in the
constitution and functioning of neural mechanisms that
underlie the phenotypic manifestations of risk for AUD.
Numerous studies have linked structural and functional
brain alterations to genetic variations associated with
neurotransmitter/transporter synthesis, receptor organiza-
tion, and brain growth (Frodl et al. 2004, 2008; Nemoto et
al. 2006; reviewed by Lipsky and Marini 2007; Peper et al.
2007). Further, genetic variations associated with risk for
AUD have also been recognized as etiological factors in
ADHD, conduct disorder, depression, and anxiety disor-
ders. Therefore, it is likely that there are specific genetic
mechanisms of risk for AUD, as well as common genetic
diatheses that exist between AUD, conduct disorder,
depression, anxiety, ASPD, and ADHD. Genetic factors
may mediate the neural circuitry comprising the external-
izing and internalizing pathways to AUD.

To date, genetic mechanisms of risk in the offspring of
alcoholic parents or families with high density of
alcoholism remain relatively unknown. Alcohol depen-
dence has been linked to regions on chromosome 1, 2, 3,
4, 7, and 8 (Foroud et al. 2000; Hill et al. 2004; Reich et
al. 1998; Williams et al. 1999). A recent review from the
Collaborative Study on the Genetics of Alcoholism
(COGA; Edenberg and Foroud 2006) have identified
variations associated with alcohol dependence in a number
of genes including ADH1B and ALDH2 (alcohol metabo-
lism genes), GABRA2 and GABRG3 (GABA receptor
genes), and CHRM2 (muscarinic acetylcholine receptor
gene). However, several of these finding have not been
confirmed, and the processes by which these genetic risk
factors influence the development of AUD have yet to be
determined.

Emerging evidence provides a potential clue to the
mechanisms through which genes increase risk for AUD.
For example, variations of the GABRA2 gene have been
linked to conduct disorder in a high-risk sample of
offspring of alcoholics (Dick et al. 2006). These results

have recently been replicated in an independent sample of
offspring from multiplex families for alcohol dependence
(Hill et al. unpublished results). This suggests that GABA
receptors are important for the behavioral attributes associ-
ated with externalizing disorders that may increase the
likelihood of developing an AUD in young adulthood.
Additionally, analyses of the COGA data indicate that the
GABRA2 gene is associated with EEG oscillations and
alcohol dependence, suggesting GABRA2 might influence
susceptibility to alcohol dependence by modulating neural
inhibition (Edenberg et al. 2004). Lastly, Hill et al. (2009a)
were the first to report a statistically significant association
between variation of the serotonin transporter (5-HTT) and
brain-derived neurotrophic factor (BDNF) genes and volume
of the OFC in the right hemisphere among high risk
offspring. Therefore, variations in genes are likely to
influence behavioral outcome by altering the structure and
function of specific brain systems.

Ultimately, understanding how genes affect behavioral
pathways and neural systems will be particularly important
in future studies of offspring of alcoholics and other
disorders that may share a common genetic diathesis. Even
though the processes by which genetic variations influence
brain structure and function remain elusive, it appears that
neurotrophic factors are likely targets for future research
given the pre-existing morphological differences in those at
elevated risk for AUD. GABA is particularly influential in
the signaling of growth factors like BDNF and other
neuronal growth-associated proteins during neural matura-
tion. Since the development of the human brain proceeds
through a series of stages, understanding the nature and
activity of growth factors during these periods in brain
development will be crucial to understanding the structural
and functional outcomes that are often used as the
dependent variables in neuroimaging genetics studies of
risk for psychiatric disorders.

The field of neuroimaging genetics provides a promising
approach for elucidating mechanisms of genetic suscepti-
bility in relation to brain structure and function (Tan et al.
2008). Also, the field of epigenetics has highlighted the
presence of heritable changes in gene expression that
occurs independently of alterations in primary DNA
sequence (Kiefer, 2007). Brain development is under
epigenetic control, and alterations in brain structure and
subsequent function may be contributed to differential
promoter DNA methylation patterns, histone changes, and
chromosomal interactions in the absence of allelic varia-
tions. Epigenetic mechanisms may account for one-third to
one-half of known genetic alterations, and they may
provide an understanding of the molecular underpinnings
of long-term changes in the structure and function of the
brain (Weinhold 2006). It is likely that the changes in the
neural structures of the externalizing and internalizing
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behavioral pathways to AUD are modulated by a variety of
genetic mechanisms. Accommodating the influences of
genetic variation and epigenetic events will be important
in future models of AUD.
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